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The starting-point for this paper is the suggestion (Batchelor 1956b) that the 
wake behind a bluff body in a uniform stream may consist principally of two 
eddies rotating in opposite directions. The fluid is assumed to be incompressible 
and in two-dimensional steady motion a t  a very high Reynolds number. Along 
the boundary between the eddies, a viscous layer must form. This layer is unusual 
in that merely the vorticity, and not the velocity itself, varies appreciably across 
it. It will be shown that such layers can be treated theoretically much more 
simply than the general case, because it is possible to linearize the equation of 
motion. They may, of course, exist in flows other than that past a bluff body. 

A discussion is also given of the flow near the rear stagnation point, where this 
boundary layer meets the body. It had been suggested that a large number of 
small eddies would have to exist there, but this seems not to be so. 

1. Introduction 
This paper is concerned with those steady two-dimensional motions of an 

incompressible fluid which include regions of closed streamlines. We may 
imagine the limit, as the viscosity tends to zero, of a large class of such flows to 
be as follows: the motion is inviscid almost everywhere, but is divided by singular 
streamlines (very near which boundary-layer approximations hold) into a number 
of regions each of which contains flow which is either irrotational or (see Batchelor 
1956a) of uniform vorticity. 

A particular case, which is of considerable theoretical interest, is Batchelor’s 
(1956 b) ‘closed wake ’ model for the flow around a bluff body in a uniform stream. 
Figure 1 illustrates this model for a flat plate set across the stream. Here, 
according to Batchelor, the dividing streamlines from A and B, the edges of the 
plate, may meet again at C. Downstream from C there extends a thin laminar 
wake of the well-known type (Schlichting 1960, Sec. IX f). The region ABC, which 
has a cusp a t  C, contains two standing eddies ACD, BCD in each of which the 
vorticity is uniform. In  this particular flow the values of the vorticity in the 
eddies are equal and opposite, by symmetry. 

The dividing streamline (CD) between two eddies may therefore (to an inviscid 
approximation) be a discontinuity not of the velocity but merely of its normal 
derivative, which remains finite. The nature of the viscous layer along such a 
line is the primary subject of the work described here. Because the velocity 
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varies only very slightly across the layer, we may linearize the equation of 
motion in it, and thereby simplify the calculations greatly. This type of simplifica- 
tion was introduced by Moore (1959), who considered the related problem of the 
boundary layers around gas bubbles in viscous fluids: there too the velocity is 
uniformly approximated, in the limit of zero viscosity, by that of the inviscid 
solution, but its normal derivative is not. Moore’s calculation was for axisym- 
metric flow. Proudman (1960) has considered two special cases of two-dimen- 
sional boundary layers in which the lowest derivatives of the velocity which 
differ appreciably from their inviscid values are the third and the fifth; this does 
not affect the linearization. 

Irrotational flow L 2 5 2  

FIGURE 1. Batchelor’s proposal for the flow past a two-dimensional flat plate. 

FIGURE 2. The co-ordinate system and inviscid velocity profile near the boundary between 
eddies. The dotted curve represents the velocity profile in the boundary layer. 

It will be noticed that at  D in figure 1 there is a stagnation point where our 
boundary layer meets the surface of the body. Using Fraenkel’s (1961) calcula- 
tion of the leading inviscid term for the flow, we shall discuss the boundary layers 
near D, both along CD and along AB. The main result is that one need not 
postulate the existence of a sequence of standing eddies of diminishing size as D 
is approached; the fluid can turn the corner without them. We remark also that 
if Fraenkel’s solution holds, the vorticity must have equal and opposite values 
in the two main eddies, even if the flow configuration as a whole is not sym- 
metrical, unless D is at a re-entrant angle of the body. 
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It should perhaps be made clear that vorticity in the external flow has two 
entirely different effects on boundary layers. One of these, which has been much 
studied in recent years, is the second-order effect of this vorticity on a boundary 
layer whose leading term does not depend on it. The other, which is the subject 
of this paper, occurs where there would be no viscous layer at all but for the 
vorticity . 

2. The boundary layer with finite vorticity 
To study the viscous layer along a dividing streamline between eddies (CD in 

figure l),  let us use general orthogonal co-ordinates such that x and y denote 
distances along and perpendicular to the boundary (see figure 2). If K is the 
curvature of this line (so that K is a function of x), the elements of length along 
the parallel curves and along the normals are (1 + K Y )  dx and dy  respectively. The 
co-ordinate system is well defined in a strip extending on each side of the stream- 
line CD sufficiently far for our purposes if K is everywhere finite. In  the im- 
portant special case of motion symmetrical about a plane, CD is straight (as it is 
in figure 1), K = 0, and the co-ordinate system is Cartesian. Let the inviscid flow 
be such that the values of the vorticity above and below CD are ( - w1 - wo) and 
( - w1 + wo)  respectively. The velocity U(x) along this line will be assumed to be 
negative (i.e. in the direction CD). 

The stream function $ may be defined so that 

a$ v=--- 1 u = -  
aY ’ 1 + K Y a X ’  

and the vorticity 
av aa 
ax ay 

$ = U(X) Y - W ( X )  KY2 + +wo Y IY I + 4% Y 2  + 0 ( Y 3 ) ,  

KU. w = ---- 

The inviscid approximation to the flow near y = 0 is then given by 

( 1 )  

where the first term on the right-hand side represents the stream U(x), the second 
the correction to that stream which makes it irrotational on y = 0, and the 
remaining terms adjust the vorticity to the prescribed values on each side of 

In the boundary layer near the dividing streamline it is convenient to make 
y = 0. 

(2) 1 
the substitutions = vt?l, 

@ = V*{Uy-+vtUKy2+\r(X,r)}, 

where v is the kinematic viscosity of the fluid. The equations of motion in the 
layer (which are given in full, in the original co-ordinates, by Goldstein 1938, 
$45) can then be reduced to 

ux y, + m x v  - ux T,?, + y, y x r -  yx Y,, = vuzx + y,,,, (3) 
where subscripts denote differentiation. A large number of terms which are easily 
seen to be negligibly small in the limit as v + 0 have been ignored. Equation (1)  
leads to the boundary condition 

Y - +wov*g (71 + & ~ ~ v * ~ 2  if Tt < < v-~L, (4) 



144 J .  F.  Harper 

where T and L are representative time and length scales of the inviscid motion. 
Because we are considering the limit of vanishing viscosity we may replace the 
condition on Iyl in (4) by the (non-uniformly valid) approximation 171 -+ 00, as 
is usual in boundary-layer theories. 

In this limiting case it appears from (4) that Y may be of order u3 for all finite y. 
It will be assumed that this is so. The two terms in (3) which are non-linear in Y 
are therefore of order v and (like vU&) can be neglected. The consistency of the 
assumptions will be checked a posteriori in the appendix to this paper. The 
linearized homogeneous form of (3) can be simplified? by the substitutions 

Y7 = F ( X ,  Y)/U, 1 

i where U(x‘)dx‘, Y = C$ = ,,-my. 

Here xo is a fixed point, to be so chosen that X is positive everywhere along the 
layer under consideration. We recall that U is negative, so that x < xo. This 
means that xo must be at  the upstream end of the layer. 

By making the substitutions ( 5 ) ,  we obtain 

F, = FFY 

as the simplified equation of motion, and 

F + w,, d 1 Y (  + o1 v3 Y (7) 

as the boundary condition for I Yf + 00. Since w1 d Y is an exact solution of 
(6), we see that only the symmetric part of P is dynamically significant in the 
boundary layer. The vorticity is given, to a boundary-layer approximation, by 

- aupy = - v d F ,  = - wo G ( X ,  I’) - wl ,  say. (8) 

G must then satisfy the following equations: 

G, = GF’Y, (9) 

G ( X ,  I’) + & 1 as Y + & 00 respectively. (10)  

G(O, Y )  = y ( Y )  (11) 

Without loss of generality, we may also impose the condition 

at  the fixed point xo. For consistency with (10)  we require that y( Y )  --f k 1 as 
Y+ I.00. 

It follows from the theory of the diffusion equation (see, for example, Carslaw & 
Jaeger 1947, § 17) that if y (  Y )  is sufficiently well-behaved-we shall take it to be 
bounded and integrable in any domain, which is enough-the unique solution to 
(9), (lo), and ( 1  1) for positive X is 

f See von KArrnAn & Millikan (1934). 
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We see from this analogy with heat conduction that for X > 0 the vorticity is 
not merely finite but is an analytic function of X and Y. 

A particular case of (12) is the similarity solution 

Here y( Y )  = & 1 according as Y 0, and y(0) = 0. Any solution (12) tends 
towards the form (13) as X increases, but the inviscid flow may well be such that 
X has a finite upper bound. Equation (13) therefore need not be a good approxi- 
mation anywhere. For this similarity solution, the variation of the boundary- 
layer thickness with S is given by 

The present theory is therefore unlikely to be valid near zeros of U ,  i.e. stagnation 
points. The flow near such points will be discussed in 5 3. It will be seen from (14) 
that, as one would expect, the thickness varies as (x,-x)a in uniform flow, that 
the layer broadens more rapidly in decelerating flow, and less rapidly if the flow 
is accelerated. If the acceleration is sufficient, the layer will actually become 
thinner. 

3. The flow near a stagnation point 
A t  the point D in figure 1,  where the dividing streamline meets the rear of the 

body, there is a stagnation point. The nature of the flow near this point is of 
interest for several reasons. First, Batchelor (19566) thought it possible that the 
fluid at  the centre of the boundary layer on CD might be brought to rest before 
reaching D. A secondary pair of eddies would therefore exist there, and perhaps 
even a whole sequence of such eddies. Secondly, the theory given in § 2 of this 
paper ceases to hold if U becomes very small, and one would wish to examine this 
case merely for the sake of completeness. Finally, it has been shown (Fraenkel 
1961) that the effects of vorticity dominate the inviscid flow near D, and if the 
angle between the streamlines which meet there (CD and DA or DB) is a right- 
angle, the inviscid solution has a logarithmic singularity. In spite of this, there 
appears to be a remarkably close analogy to the well-known solution (Hiemenz 
191 1) for the motion near a stagnation point where an irrotational flow divides on 
reaching a rigid wall. It will also appear that Batchelor’s hypothesis of ‘secondary 
eddies’ is unnecessary. The essential physical reason for this is that the velocity 
in the boundary layer on CD is so nearly equal to the velocity just outside it that 
the fluid in the layer can be brought to rest only by an adverse pressure gradient 
great enough to do the same to the fluid in the inviscid region. 

3.1. Motion outside the viscous layer on the wall 

Let the angles between the tangents at  D to CD and DA, DB be /?, /3’ respectively. 
We shall consider only the case in which neither /?nor /?‘ vanishes, i.e. the stream- 
lines meet at D a t  finite angles to one another. Use will be made (see figure 3) 

10 Fluid Mech. 17 
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both of rectangular Cartesian co-ordinates (x, y) with the x-axis along the tangent 
to DC, and of polar co-ordinates ( r ,  8) whose initial line is along the bisector of the 
angle /?. In each case the origin is at  D. The Cartesian system here defined tends 
to coincidence, as D is approached, with the orthogonal curvilinear system used 
in 3 2 above. Our calculations will be primarily of the motion in the upper standing 
eddy (i.e. y >, 0 ) ;  the motion in the lower one could be found by exactly analogous 
methods. 

B 

FIGURE 3. The inviscid flow near a stagnation point. 

Fraenkel’s results for the dominant terms (for sufficiently small r )  describing 
the flow outside the boundary layers are 

ljrl = $(coo+ ol) rZ(1- cos 83/cosp) 
$2 = ( coo + w l )  nr-42(&n + In ( r /a)  cos 28 - 8 sin 28) if /3 = +r 

= - Grnil cos (ne/p) + $(wo + wl) r2(1- cos 28/cos p) if n > B > &r, 

if /3 < an, 1 (15) and 

where a and C are constants determined by the inviscid motion. They must both 
be positive. The expressions are valid if the curvature of every dividing streamline 
is bounded in some neighbourhood of the origin. We assume that this is so. 

The values of U(x), as defined in 5 2 ,  in the three cases are 

U,(x) = -+(Wo+wl)xtanp+o(x), 

U z ( x )  = (wo + w l )  n-lx(2ln (%/a) + 1) + o(x), /3 = an, 

U,(x) = - (7~/,8) Gx(n@’)-l- +(wo + w l )  x: t anp  + o(x:), 

p < an, 

/3 > in. 
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Since (wo + wl) and C are positive, the U, are negative for sufficiently small x. The 
analogous results calculated from the lower eddy are found by replacing (wo + wl) 
and ,8 by (w,, - wl) and B' respectively. Because Bernoulli's theorem must hold 
for the inviscid motion, and the origin is a stagnation point for both eddies, the 
values of q must be equal. It follows immediately that p = p' and w1 = 0,  unless 
both p and 8' are less than tn, in which case we have only that 

(wo+wl)tanB = (wO-wl)tanp'. 

This means that the two eddies in the wake of a body without re-entrant cavities 
must have equal and opposite vorticities, because p+p' 2 n for such a body, 
wherever the rear stagnation point happens to be. Because p = p', the motion is 
symmetrical about Ox, as far as its leading terms near 0 are concerned. For 
simplicity, we shall assume that ,B = p' and w1 = 0 even if ,B < in. 

The boundary-layer theory in Q 2 can be applied if the calculated perturbations 
to u = q ( x )  are very small by comparison with Ui(x). A fuller discussion of the 
validity of the approximations will be deferred to the appendix, in the interests 
of clarity here. The result is that if U > O(vk),  which is in all cases true if x > O ( v f ) ,  
the boundary-layer theory is still valid (or, strictly speaking, self-consistent: it  
has not been proved that the solution must be of this form anywhere). 

If x is very small, however, the layer is thickening rapidly and vorticity 
gradients are decreasing, which suggests that the viscous terms may become 
unimportant for sufficiently small x. It will now be shown that for this to happen 
it suffices that x = o( l), so that there is a region O ( d )  < x = o(1) where the layer 
is effectively inviscid. We do so by comparing the orders of magnitude of the 
various terms in the vorticity equation, a boundary-layer approximation to 
which is 

where w is the local vorticity. If our linear theory holds, 

@Y w, N w0( U2G, + v-*yUU, GIr), 

@Y wx - @x WY = VwYY, 

- Wov-4mJxG,,  
VWYY N WQ U2Gy ,. 

(We recall that G, = G y y . )  The ratio of inertial to viscous terms is then 

IjV = wQ v-*~UU, G,/w, U2G,, 

= (YGI - /XGx)  (xuxl~2). (17) 

Both of these factors in parentheses are dimensionless. The first ( YG,/XGx) 
depends only on the solution of the diffusion equation given in Q 2. If we make the 
assumption that the vorticity is a monotonic function of Y a t  X = 0 (the up- 
stream end of the layer), which seems intuitively likely, YG,/XGx is finite and 
non-zero at all points where X and Y are. In particular, for the similarity 
solution (13) its value is - 2 everywhere. The second factor in (17), however, 
tends to infinity as x -+ 0, because U+ 0 and neither X nor U, does. (In fact 
U, -+ co if ~3 2 in-.) XU,jU2 cannot tend to infinity at any other point on the 
boundary except the upstream end, if there is a suitable flow regime there. But 

10-2 
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the upstream end is outside the scope of the present theory in any case. We note 
in passing that XU,/ U2 is finite and constant if either 3 cf (xo - x ) ~  or X K e(xo-x)ib, 

where n and b are constants. 
It can be concluded that viscosity is negligible in the boundary layer at points 

sugciently near 0 for x'U,/Uz to be very large if the boundary-layer assump- 
tions are still valid. The condition is, as mentioned above, that O ( d )  < x = O( 1). 
The distribution of vorticity in this region can now be found from (8), with w1 
put equal to zero. We may replace X with negligible error here by 

Also, since the perturbations to the stream U ( x )  are small in the boundary layer, 
a first approximation to the stream function @ is v*Y. The vorticity is then, in 
this approximation, - wa G(c2, v-*@), which is a function of $, as required for an 
inviscid flow. 

We now assume that the motion remains inviscid, with this dependence of 
vorticity on $, for x = O(v) ) ,  where the flow is by no means unidirectional. The 
suggested equation governing the motion is then 

V2@ = wa G(C2, v-*$/). (18) 

The possibility of a viscous boundary layer petering out into an inviscid flow, 
with only the distribution of vorticity left to remind us of its viscous origin, is not 
mentioned in any other work on the subject known to me.? It may well occur 
in other circumstances where a boundary layer approaches a point a t  which 
Prandtl's equations for the motion in the layer break down. 

Equation (18) is intractably non-linear, and no general methods of solution 
(apart from term-by-term evaluation of series, andnumerical computation) appear 
to be known. We can say, however, that its solutions need be appreciably 
different from those of Fraenkel for the exterior flow only where II. = O(cv*). The 
'inviscid boundary layer' therefore remains thin. In  the region where $ < c d ,  
which is the immediate neighbourhood of the dividing streamlines through 0, 
(18) can be written as 

where G' = [ilG(cZ, Y)/a and h is a constant with the dimensions of a length 
and of order of magnitude vf. The solution of (19) which holds near the origin is 

(19) V'$ += w,v-*G'$ = h-2$, 

@ = A(r/h)"'P cos (7relp) + O((r/h)2"'P), (20) 

where A is a constant, because $ = 0 where 6 = & +p, and there is no singularity 
at the origin. It seems unlikely that A could vanish, for if it did there would 
have to be more dividing streamlines reaching the stagnation point in the 
arc -@ < 0 < +p. 

We now have approximations to the solution near the origin both for @ 9 cvt 
and for @ < cvg. If p 2 in it is also possible to find one for $ = O(cv*) without 

t Except that of Moore (1963), which I first saw after the present work had been 
submitted for publication. He has found the same phenomenon in axisymmetric flow 
while continuing his study (see Moore 1959) of the flow around a spherical bubble. 
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having to solve (18). The method for doing this is most easily seen for the case 
p > in, which will be dealt with first. We shall then consider the case /3 = in-. 

Let us assume that if /3 > in, $ N $, (defined as in equation (5)) for large 
values of $/cv*, or in other words that the 'inviscid boundary layer' matches to 
Fraenkel's solution for the flow outside it. We introduce dimensionless scaled 
co-ordinates by putting 

$ = cvB$,, r = (cv*C-1)b/nr3, (21) 

so that $, = O(cv*) where r3 = O( 1) .  Equation (18) becomes in these co-ordinates, 
with the obvious definition of V;, 

(22) 

The assumption that cvt $3 N $, for r3 $ 1 leads to 

$3 N - r$P cos (~0//3) + $k3 T;( 1 - cos ~ B / C O S  /?), (23) 

and we also have the boundary condition that $, = 0 on the dividing streamlines 

Since g($ )  is a bounded function and k, cc vlln-4, which tends to zero as v does, 
e = k i p .  

the forms of ( 2 2 )  and (23) suggest that $3 can be written as 

$3 = @31('3, '1 f k3 @32(r3 ,  '1 + 0(k3), (24) 

where and are independent of v (or k,). If this is so, we see from (22) that 
must be a harmonic function and then from (23) that 

= - cos (nO//3), (25) 

for any other form would either have a singularity in the flow field or not obey the 
boundary conditions. Replacement of c$, by its dominant term in (22) then 
yields the following Poisson equation for the lesser term 

vg @32 = g('31)' (26) 

The replacement is valid if k, which can be seen from (20) to be true 
near r3 = 0,  where, in fact, @32 = O(@31), and from (23) to be true for r' < r3 < r", 
where r' and r" are constants such that r' 9 1 and r" can be chosen to be arbitrarily 
large if k, is sufficiently small. It seems reasonable to suppose that the solution of 
(26) is such as to make it valid where r ,  = O( 1) ; all that is needed for this is that 
@32 be finite there. 

I have not been able to solve (26), even when G has the similarity form (13) 
and g(@) = erf (@). The exact nature of is, however, of less importance than 
the fact that the irrotational term remains dominant in the inviscid boundary 
layer, having become so in the inner parts of the outer region where Fraenkel's 
solution $, holds (provided, of course, that the various hypotheses about the 
behaviour of the flow are correct). It is hardly a matter for surprise that (26) is 
not uniformly valid for r3 -+ CQ; most boundary-layer theories fail in that way a t  
their outer limits. 

< 
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similar to those used above, by 
For the case p = in, dimensionless scaled co-ordinates are defined, for reasons 

@ = C V ) ~ , ,  r = c*w;*vf{ln(c2/v)}-J r,, (27) 

vi #2 = {In (c2/v)}-1 $(#J = k,g(4,), say. 128) 

so that now @, = O(v4) where r2 = O( 1). Equation (18) becomes 

Like k3 in the analogous equation (22), k, -+ 0 as v + 0. The condition analogous 
to (23) is now 

4, N c-~v-@, = n-1{ - + +k, In k,} rg cos 38 

+ k, n-lr:{tn + ln(cw;*a-l) cos 20 +In r2 cos 38 - 8 sin 28}, (29) 

for large values of r .  It will be seen that qj2 is also dominated by an irrotational 
term if lnr, < k;l, and reasoning analogous to that given above leads to the 
hypothesis that 

and to the conclusions that 

(31) 

vg @23 = g('21). (32) 

@ 21 - - - _  @,, = - (47~)-1 r i  cos 28 = - (2n)-1 5, y,, 

Although the actual flow near the stagnation point cannot now be a small 
perturbation of $2, because there is no term in lnr  in (go), it  appears from (30) 
and (31) that it is only slightly perturbed from that irrotational flow which is a 
first approximation to $, where r2 is of finite order (more exactly Ilnr21 < kgl), 
i.e. where $2 itself is of order C V ~ .  The rate of strain is very large in the irrotational 
stagnation flow at the corner, because of the logarithmic singularity of $,; by 
transforming back to the original co-ordinates this rate of strain ( -a) is easily 
seen to be -a  = - (27r)-l w,{ln ( c ~ / v )  + 21n In ( c ~ / v )  + O( l)}. 

If the stagnation point under consideration is in the body of the fluid, it seems 
possible that viscous boundary layers may form again where the flow converges 
after leaving the neighbourhood of the stagnation point. Because of the sym- 
metry, the value of X will be given initially by c2. Such flows could exist (as far 
as our approximation to the local mechanics is concerned) for ,8 = ;.IN, where N 
is any integer 2 2, with vorticity alternately & w,, in the sectors. 

(33) 

3.2. Motion in the viscous layer on the wall 

If the stagnation point which we have been considering is on an impermeable 
rigid boundary to the fluid, the boundary layer on the wall sufficiently near that 
point must have one of the similarity forms calculated by Hiemenz (191 1) for the 
case /3 = &n, and by Falkner & Skan (1930) for /3 =t= +i-. This is a consequence of 

Because there is a logarithmic term in the second of equations (15)) the structure 
of the layer which will form on the wall if /3 = in requires closer examination ; 

(20). 
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it is not obvious a priori that there exists a similarity form for the layer which 
will hold in spite of the logarithmic singularity. 

At points sufficiently near 0, the inviscid flow is given approximately by the 
stream function @21 + k, In k, @22 of 5 3.1, 

g =  - m y ,  = -aglax = (34) 

a! being defined as in (33). 

FIGURE 4. The flow near a stagnation point on a rigid wall, as suggested in 8 3.2. The 
shaded regions indicate the extent of the viscous boundary layers. 

(We are here considering the boundary layer on Oy;  see figure 4.) This approxi- 
mation, which is an irrotational stagnation flow towards the wall, with uniform 
rate of strain - a!, holds if r2 is of order unity, i.e. r = O(h’k$), where A’ = c*w,tvf. 
The boundary layer on the wall is accordingly of the 3lasius-Hiemenz similarity 
form 1c. = - ( a ! V ) * Y f ( O ,  

where t = (./4*X, 

and f (5) satisfies the differential equation 

f’2-”’ = 1 +f”, 

and the boundary conditions 
(35) 

f (0 )  = f ’ ( O )  = 0, f’(CO) = 1. (36) 

The properties of these equations are well known and need not be given here; 
the details can be found in Schlichting (1960), Sec.v.10. 
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If y 9 A', it can be seen from the symmetry of the inviscid flow about the line 
y = x that the tangential velocity just outside the layer on the wall is 

V = 3wo r l y  In (a / y )  + O(y). (37) 

Suppose also that y < a.  The dominant term in this expression for V is then the 
first. Let us put 

II. = - {3JlWO+ In (a/v)}& Yfl(t1) + h(Y, tl), 
where c1 = {zv-~w, n-lln (a/y)}$ x. (39) 

(38) 

We find that flit1) must satisfy exactly the same differential equation (35) and 
boundary conditions (36) asf(6). The error made by neglecting the second term, 
h(y ,  t1), in the expression for $ can be shown to be much less than the leading 
term, because In ( a / y )  is large. (I am indebted to Dr I .  Proudman for suggesting 
that this approximate similarity solution might exist.) 

This result means that the Blasius-Hiemenz similarity solution can still be 
used (as modified) where alh' $ y/h'  9 1, as well as in the original range 
ylh' < k$ < 1. It seems reasonable to expect that a similar artifice would enable 
us to continue this type of solution through the range near y = A', in which 
V changes smoothly from the form (34) to the form (37), if the exact manner of 
variation of V were calculated in that range. It also seems likely that this type 
of motion can exist only if the general flow is towards the wall, as is known 
to be the case when the motion outside the boundary layer is irrotational 
everywhere. 

Figure 4 contains a sketch of the regions in which viscous boundary layers 
exist, as suggested in this section. It appears that the layer on the wall can adapt 
itself to the inviscid flow field without secondary eddies near the stagnation 
point, even though that field has the rather unusual structure described in 3 3.1. 

I am grateful to Dr LProudman for much helpful discussion and criticism, 
and to the University of New Zealand for a postgraduate scholarship. 

Appendix 

which was made in $5  2 and 3.1. 
We now justify the basic assumption about the smallness of perturbations 

Equation (3) is reducible to the form (6) if the following three conditions hold: 

IYI < PI, 
I ~ X T P l l  < l y % V I )  

1 Y ) T J  9 IUZZl. 
For the solutions of (6), these conditions are: 
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In order to gain a physical interpretation of these results without undue algebraic 
complexity, we shall give their explicit forms for the similarity solution (13). The 
conditions can be written, respectively, as 

I U / W , l  9 2:n-tc:",tv& = 2:T-*A', 

I y / d  I < { - 2 W-Y In ( ~ v w : S /  U*)}3, 

1 y / d l  Q { - 2U-zS In (nvU& X/+iwi)}$.  

(A 4) 

(A 5) 

(A 6) 

Equation (A 4) is seen to give the order of magnitude of U down to which the 
theory still holds, and (A 5 )  and (A 6) then give the upper limits on (yl. Although 
it is always possible that 1 y / d /  > O( 1) in the limit as v -+ 0,  the validity is non- 
uniform. This is a general property of boundary-layer theories, which was only 
to  be expected here. A less stringent form of (A5), based on I Uxrl % lYxl instead 
of (A 2), can be given if ri, $. 0, but there is little point in doing so, in view of (A 6). 
The range of validity permitted by (A 6) is considerably smaller than those one 
finds in ordinary boundary-layer theory; the reason is that we are requiring 
a perturbation quantity to be large when compared with one derived (albeit with 
a factor v )  from the inviscid flow. 

Viscosity is negligible in the boundary layer along the dividing streamline if 
XUx/Uz is very large. If U2/1PI is also very large, both the inviscid and the 
boundary-layer approximations are valid. It is obviously possible for both 
conditions to be satisfied if v is sufficiently small, because the requirement is 
that U be larger than O ( d )  but smaller than O(1). The central hypothesis of the 
present work is that the inviscid approximation continues to hold for U = O(vP), 
where the boundary-layer one does not. This hypothesis can be tested by the 
consistency of the asymptotic solutions obtained from it. No reason is apparent 
from the calculations in 9 3 why it should not be valid. 
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